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Abstract

Recent spherical nanoindentation protocols have proven robust at capturing the
local elastic-plastic response of polycrystalline metal samples at length scales much
smaller than the grain size. In this work, we extend these protocols to length scales
that include multiple grains to recover microindentation stress-strain curves. These
new protocols are first established in this paper and then demonstrated for Al-6061
by comparing the measured indentation stress-strain curves with the corresponding
measurements from uniaxial tension tests. More specifically, the scaling factors
between the uniaxial yield strength and the indentation yield strength was
determined to be about 1.9, which is significantly lower than the value of 2.8 used
commonly in literature. The reasons for this difference are discussed. Second, the
benefits of these new protocols in facilitating high throughput exploration of
process-property relationships are demonstrated through a simple case study.

Keywords: Sample libraries, High throughput, Hertzian indentation, Al alloys, Aging

Background
Recent advances in spherical nanoindentation protocols and data analyses have

demonstrated the ability to reliably and consistently extract the mechanical re-

sponse in small material volumes in the form of indentation stress-strain (ISS)

curves [1–12]. The majority of these studies have focused on very small length

scales (regions typically within individual grains of a polycrystal). It is important to

recognize that these new protocols rely on the continuous stiffness measurement

(CSM) [13–15], now readily accessible in many modern nanoindenters. Indeed,

CSM facilitates a reliable estimate of the evolution of the contact radius during the

entire indentation test and makes it possible to extract a meaningful indentation

stress-strain curve that exhibits an initial elastic regime, an elastic-plastic transi-

tion, and a post-yield response.

However, the gap in the length scales between the nanoindentation protocols

mentioned above and the standardized bulk mechanical tests [16] is too large, as

illustrated in Fig. 1. There is therefore a critical need to develop validated techniques

for measuring local mechanical response in polycrystalline metals at the scale of
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several grains (say ~10 to ~100 grains). This information is essential to produce robust

physics-based connections between the grain-scale and the bulk mechanical responses.

There are many potential avenues and strategies to fill this critical gap. Numerous

efforts in current literature have explored small-scale testing (e.g., [17–22]). However,

these methods are intensive in both effort and cost. Indentation techniques have an

inherent advantage in that they can potentially result in high throughput assays, while

requiring only small volumes of material.

It should be noted that the currently available nanoindenters cannot be easily

reconfigured to conduct the desired microindentation tests by simply using much

larger indenter tips. This is mainly because of the limits in the loads the nanoindenters

can apply on the sample, and the inherent operational limits of the current CSM

modules. On the other hand, none of the current microindenters allow a CSM in

addition to the measurements of load and displacement.

Other than the instrumentation challenges described above, the other major chal-

lenge with indentation techniques is the correlation of properties measured in in-

dentation with those measured in the standardized bulk tension tests. For the

purpose of this paper, bulk tension and bulk compression tests are treated to pro-

duce the same uniaxial stress-strain response; this is a reasonable assumption for

most metals. Numerous prior studies have explored the correlations between in-

dentation and uniaxial measurements, as summarized by P. Zhang et al. [23]. As

early as the 1950s, Tabor [24] demonstrated that the uniaxial stress-strain response

could be related to hardness curves (a collection of hardness measurements at dif-

ferent indentation loads or indentation depths) produced using a ball indenter.

Most importantly, Tabor’s study suggested the use of constraint factor of 2.8 (ac-

counting for the higher hydrostatic pressure in the indentation tests) to relate

hardness to the uniaxial yield strength. However, missing from Tabor’s experiments

are the elastic loading, elastic-plastic transition, and early plastic deformation. Ar-

guably, his hardness measurements represent effective flow stresses at relatively

large plastic strains. This then means that estimating uniaxial yield strength on an

engineering stress-strain curve from hardness measurements entails an extrapola-

tion. This extrapolation introduces a large amount of uncertainty in the estimated

Fig. 1 Indentation schematic of nanoindentation measurements which record the grain scale response and
microindentation measurements which record a mesoscale response
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uniaxial yield strength. In order to reduce this uncertainty, the elastic loading,

elastic-plastic transition, and early plastic deformation need to be captured using

highly reliable and repeatable protocols. Making matters worse is the use of sharp

tip geometries (e.g., Berkovich and Vickers) which impose plastic deformation

almost immediately upon loading, making it nearly impossible to recover this

critical information from indentation tests. There have indeed been a few note-

worthy instrumented spherical microindentation studies based on Tabor’s main

idea. Although these have demonstrated the recovery of the elastic and plastic

properties [25–27], critical information (the elastic-plastic transition) is still missing

from test protocols and analyses. As noted earlier, this level of sophisticated

analyses of indentation raw data to produce reliable and meaningful ISS curves has

thus far only been possible with spherical nanoindentation [28].

The main goals of this study are twofold. First, we report on our efforts to conduct

instrumented microindentation tests on a universal hardness testing machine and recover

ISS curves. The details of the testing and analyses protocols are discussed. The ISS curves

produced on Al-6061 are compared with the uniaxial stress-strain curves to recover the

constraint factor (the ratio of the indentation yield strength to the uniaxial yield strength).

Second, we demonstrate the potential of microindentation protocols developed here for

rapid (high throughput) exploration of process-property linkages in Al-6061.

Methods
A major goal of the present work is to establish a relationship between the mesoscale

spherical microindentation stress-strain measurements and standardized tensile tests.

Consequently, in this work, we have conducted both types of mechanical tests (i.e.,

tension tests and spherical microindentation tests) on selected samples so that we can

critically explore the correlations between properties measured in the two different test

types. As it was described earlier, the elastic-plastic transition or indentation yield

strength determined using spherical indentation stress-strain protocols is a more phys-

ically relevant measurement to establish correlations with uniaxial strength. This is the

first mesoscale study using protocols based on the spherical nanoindentation protocols

of Kalidindi and Pathak [4, 29].

Materials

The aluminum alloy 6061 was chosen for this study because of its industrial im-

portance and sensitivity to thermal processing (i.e., aging). A large plate, approxi-

mately 30 × 30 × 2.5 cm thick, was acquired from Mercury Marine (Fond du Lac,

WI) in the T6 condition with nominal chemical composition listed in Table 1. All

metallographic specimens presented in this work were ground and polished to

Table 1 Nominal chemical composition of as-received Al-6061 measured by inductively coupled
plasma (ICP) on 1 cm3

Element Al Cr Cu Fe Mg Mn Si Ti Zn

Min % 0.04 0.15 0.8 0.40

Max % 0.35 0.40 0.7 1.2 0.15 0.80 0.15 0.25

Actual % Remainder 0.20 0.30 0.5 1.0 0.12 0.46 <0.01 0.10
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0.06-μm colloidal silica with a final step of electro-polishing. Electron backscatter diffrac-

tion (EBSD) maps were produced using a Tescan Mira XMH field emission scanning

electron microscope (FE-SEM) with an EDAX Hikari camera and TSL OIM Software.

Grain size and orientation distribution (i.e., texture) were extracted from these scans.

Mechanical tests

Tensile testing was performed on an Instron load frame with a 900-kN capacity load

cell. Tests were run in accordance with ASTM Standard E8-13a with a constant cross

head speed to produce a strain rate of 0.005 s−1 [16]. Specimens had a diameter and

gage length of 0.635 and 2.54 cm, respectively. The gage length displacement was mea-

sured with a 2.54-cm clip gage. Tensile samples were excised from the as-received (AR)

material along the rolling direction (RD) of the plate. Tests were also conducted in the

TD direction as well as at 45° to RD direction. Since the measurements showed very lit-

tle anisotropy, the measurements in these other directions have not been included in

this paper. Following protocols employed in conventional material development efforts,

additional tensile samples in the RD direction were aged for 2 h at different tempera-

tures to explore the effect of aging heat treatments (see Fig. 2) using a salt bath furnace,

followed by quenching in water. Aged material was kept in a freezer between heat

treating and characterization to avoid any natural aging.

Indentation testing was performed on a Zwick-Roell Z2.5 Zwicki Hardness Tester

with the indentation axis parallel to the ND plane normal. The opposing surface to

the test surface was ground flat and parallel. Specimens were mounted to a preci-

sion ground hardened steel plate with a thin layer of adhesive. Indentation tests

were run with a constant crosshead speed of 0.1 mm/min with incremental

unloading (50–30 % of the peak force) and reloading cycles until the specified

number of cycles was reached, as shown in Fig. 3. These unloading cycles are

essential to the recovery of the ISS curves, as will be discussed later. A spherical

tungsten-carbide tip was used for all tests, which had a nominal composition of

94 wt.% WC and 6 wt.% Co and a radius of 6.35 mm.

Fig. 2 Thermal heat treatment process for Al-6061T6 condition of the as-received material and the aged
samples at different temperatures
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Microindentation data analyses

The general method followed for converting indentation load-displacement data into

indentation stress-strain curves can be found in references [4, 29]. It is emphasized that

this is the first use of these protocols to study polycrystalline material volumes in the

primary indentation zone. For microindentation testing equipment used in this work,

there is no CSM as noted earlier, this is only available in most modern nanoindenters

[30]. As demonstrated in prior work [4, 29], the measurement of unloading (elastic)

stiffness is central to a reliable estimation of contact radius needed in the computation

of indentation stress and indentation strain measures. Consequently, in the present

work, we rely on superimposing intermittent unloading-loading cycles on the desired

loading history. Note that each unload results in the estimation of one data point on

the ISS curve (i.e., one value of indentation stress and indentation strain; [29]). Several

challenges arise in using these protocols for microindentation. First, it is difficult to

capture the initial elastic loading with an instrumented microindenter. Nanoindentation

systems have adequate load and depth sensing resolutions needed to capture the initial

elastic loading; however, instrumented microindenters are not well designed for captur-

ing the initial elastic loading segment. The higher loads required generally for meso-

scale measurements (102–103 N) significantly reduce the load resolution during the

early stages of loading, while the best displacement resolution currently available is

around 20 nm. Second, the higher loads present a significant challenge in the sample

alignment and mounting. For a successful test, the top and back surfaces of the sample

must be polished parallel to each other and set directly on a rigid surface (hardened

steel plate or directly on the stage); otherwise, misalignment, sample rotation, or com-

pliance issues will produce erroneous results. Third, the combination of higher loads and

Fig. 3 Example microindentation load-displacement curve, analysis procedure, and stress-strain curve. The
red data corresponds to the initial elastic segment used to determine the effective modulus. The linear
regression of this data, bottom left, also determines the displacement zero point correction. In this example,
no load correction was applied. Each unload is analyzed using the same linear regression to determine the
contact radius

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 5 of 20



less rigid indenter tips means that the elastic displacement of the tip may be significant. For

example, the elastic displacement of the tip (usually diamond with a modulus >1000 GPa) is

typically negligible in nanoindentation, especially with the low loads (<500 mN). The same

assumption is likely to be a poor assumption for tungsten carbide tips (around half the

modulus of diamond) at the higher loads seen in microindentation. Therefore, a suitable

correction is needed in the analysis to account for the tip displacement based on the elastic

properties of the tip material. Below, we briefly review the main details of the indentation

data analyses protocols used in this study.

Hertz theory (Eqs. (1)-(4)) describes the frictionless, elastic contact between two

isotropic, homogenous bodies with parabolic surfaces [31].

P ¼ 4
3
EeffR

1=2
eff h

3=2
e ð1Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Reffhe

p
ð2Þ

1
Eeff

¼ 1−v2i
Ei

þ 1−v2s
Es

ð3Þ

1
Reff

¼ 1
Ri

þ 1
Rs

ð4Þ

In the above equations, P and he denote the indentation load and displacement,

respectively. Reff and Eeff denote the effective radius and modulus of the combined

indenter-sample system, while a denotes the contact radius. The subscripts i and s

denote that the variables are associated with the indenter and sample, respectively.

During the early stage of loading on a flat sample surface, prior to any permanent

deformation, the effective radius is equal to the indenter radius (i.e., Reff = Ri). In this

initial elastic regime, it is relatively easy to extract a value of the effective modulus, Eeff
using Eq. (1) and standard regression techniques. The sample Young’s Modulus, Es, can

then be determined from Eq. (3), provided the sample Poisson ratio, vs, and the indenter

elastic properties are known. It is important to note that our treatment of the sample as

elastically isotropic (reasonable for the weak texture and very little anisotropy observed in

tensile tests) is not a limitation of the analysis. Many authors have shown that the Eq. (1)

extends to elastically anisotropic materials with only slight modifications to Eq. (3)

[32–38]. The contact area becomes elliptical instead of circular; however, the error

associated with treating it as circular is very small [34]. The contact radius can be

interpreted as an effective contact radius for elastically anisotropic materials.

In nanoindentation tests, the identification of the elastic loading segment involves

determining the zero-point corrections for both load and displacement [4, 29]. In

microindentation, the indentation stress-strain curve is far less sensitive to surface and

tip disparities because of the large tip radii, and in many cases, there is no need for load

correction (see Fig. 3). The analysis in this study systematically examined different load

corrections and their corresponding displacement corrections following the approach

described in earlier work [29]. Based on this exploration, it was decided to select the

optimal load correction as the one that minimizes the log of the average absolute

residual of the linear regression fit for the elastic segment (prior to any detected re-

sidual deformation in the sample); the displacement correction is also automatically

identified in this process.
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After plasticity occurs, the effective radius is unknown, and the total displacement is

now the sum of the elastic displacement and the permanent displacement or residual

height, hr. However, unloading is primarily elastic, and therefore the contact radius, a,

can be determined by applying Hertz’s equations to the unloading data using standard

regression techniques and the following equations:

h ¼ kP
2
3 þ hr ð5Þ

k ¼ 3
4

� �2
3

E
−2
3

effR
−1
3

eff ð6Þ

In Eq. (6), Reff is the only unknown, because Eeff was already determined from the

initial loading data and is assumed to be the same even after the sample experiences

plastic deformation. This assumption is reasonable because the effective (average)

plastic deformation in the indentation zone is quite small in these experiments.

Unloading data between 95 and 50 % of the peak load was used for each unload in this

analysis. The contact radius at the point of unloading is determined from Eq. (2). After

the contact radius is determined, indentation stress and strain are calculated using the

following set of equations, where the subscript max represents the peak load and

displacement for each unload.

σ ind ¼ Pmax

πa2
ð7Þ

εind ¼ 4
3π

hs;max

a
ð8Þ

hs ¼ h−hi ð9Þ

hi ¼
3 1−v2i
� �

P

4Eia
ð10Þ

In the above set of protocols, care was afforded to subtract the elastic displacement

of the indenter, hi, in order to use only the displacement of the sample, hs, in the

computation of the indentation strain in the sample, εind. This is accomplished using

Eqs. (9) and (10), where the elastic displacement of the indenter, hi, is calculated using

the Hertz’s theory (for the displacement of the indenter tip pressed into a rigid flat

surface in the absence of a sample). We assume that this is a good approximation for

the indenter displacement during our tests. It can be seen from Eq. (10) that the

correction will be higher for indenter tips with lower moduli. In this study, a Young’s

modulus and Poisson ratio of 640 GPa and 0.21 were used for the indenter, based on

values reported in literature for tungsten carbide [39]. In this work, the sample modu-

lus was computed assuming a Poisson ratio of 0.3, and the determination of indenta-

tion yield strength was made using a 0.2 % indentation plastic strain offset on the

indentation stress-strain curve using an indentation modulus of Es
1−v2s

(see Fig. 3).

Results and Discussion
Comparison of microindentation and uniaxial responses

Optical and SEM-BSE micrographs of the AR material and heat-treated samples can be

seen in Fig. 4, which shows an increase in large precipitates with increasing aging

temperature. The grain size distribution and texture were not affected by aging
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temperature. Tensile testing revealed decreasing tensile strength with increasing aging

temperature (see Fig. 5). The strength of Al-6061 is largely controlled by the amount

and types of Mg2Si precipitates [40–43]. A detailed characterization and quantification

of the types and amounts of precipitates present in the samples subjected to various

heat treatments requires transmission electron microscopy (TEM) which is outside the

scope of the present study. However, it is clear from the micrographs shown in Fig. 4

that the aging treatment causes an increase in large precipitates, likely β precipitates

which do not directly affect the strength, meaning there is a reduction in β” precipi-

tates, which have the most influence on strength. This is consistent with the observed

trends in the tensile test results shown in Fig. 5.

Indentation stress-strain measurements on the samples subjected to the same aging

treatments are presented in Fig. 6, and they serve to make direct comparisons with the

tensile tests on bulk samples reported in Fig. 5. Indeed, the indentation measurements

Fig. 4 Optical and SEM-BSE micrographs of the AR material (a, f) and different aged samples: 204 °C (b, g),
274 °C (c, h), 343 °C (d, i), and 413 °C (e, j), respectively. The texture of the AR material is shown in k. All images
are taken from the RD plane. The average grain diameter measured on an area containing ~450 grains using
EDAX OIM Analysis software was 59 μm, and the average aspect ratio was 0.40
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Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 9 of 20



reveal the same trends seen in the bulk tensile samples (i.e., decreasing strength with

aging temperature). Furthermore, the ratio between the 0.2 % offset indentation yield

strength and the 0.2 % offset tensile yield strength was observed to be about 1.9, with a

standard deviation of 0.3. This ratio accounts for the fact that the hydrostatic stress

component is significantly higher in the indentation test conditions, compared to the

uniaxial stress conditions.

The length scale of the indentation zone in our experiments was determined based

on the concept of a primary indentation zone defined as a cylindrical volume of radius

a and height 2.4a [4]. The variation in the zone size with respect to the microstructure

for different individual heat treatments can be seen in Fig. 7. This zone size is an

estimate of the probed material. With the average contact radius and the average grain

size (54 μm), one can estimate the number of grains inside the primary indentation

zone (i.e., the volume of the primary indentation zone divided by the volume of the

average grain assumed to be a sphere). This information is listed in Table 2. At the high

end (AR and 204 °C samples), the number of grains is approximately 360, and at the

low end (413 °C sample), the number of grains is approximately 3. In all cases, there is

a high probability of grain boundaries present in the indentation zone at yield. The

difference between samples is primarily the number of grains in the polycrystalline

volume. Despite the relatively small number of grains for the sample aged at 413 °C,

the indentation yield strength correlates well with the bulk uniaxial yield strength. Had

the primary indentation zone been even smaller (i.e., a smaller indenter size), the

mechanical response would likely be dominated by individual grain orientations at the

indentation site and not represent a bulk strength measurement. The protocols for

Fig. 7 Overlay of primary indentation zone (2a × 2.4a) at yield on an EBSD grain map. The average contact
radius at yield for each condition was 156 μm (AR), 158 μm (204 °C), 103 μm (274 °C), 92 μm (343 °C), and
31 μm (413 °C). The indentation direction is parallel to the normal direction (ND)
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extracting hardening rates from indentation stress-strain curves are being established at

this time. However, the representative indentation stress-strain curves in Fig. 6 qualita-

tively show there is no trend in the indentation hardening rate with aging temperature.

Relationships between indentation and uniaxial measurements

Literature reports a value of around 2.8 for the indentation constraint factor defined as

the ratio of hardness or mean pressure to uniaxial flow stress [1, 3, 5, 24, 44–52]. These

studies are primarily inspired by Tabor’s initial experiments conducted on copper and

steel for which he identified a ratio of 2.8. In Tabor’s experiments, the contact radius

(actually the projected contact area) was determined from residual indents after

complete unloading. It should be recognized that the protocols described and employed

in the present work follow the definitions arising from Hertz’s theory, where the

contact radius and the corresponding projected contact area are both defined in the

fully loaded condition. Furthermore, the measurements Tabor made required a signifi-

cant amount of plastic deformation in order to make a residual indent, whereas this

study quantified the 0.2 % offset indentation yield strength, which is well below the

typical plastic strains seen in hardness measurements. The contact radius at peak load

should be expected to be greater than the contact radius measured on residual indents

because of the elastic recovery; this difference will be significant in the early portion of

the stress-strain curve (note that for a purely elastic indentation there is no residual

indentation). As such, it is very reasonable that the constraint factor obtained using the

protocols presented here (~1.9) is significantly lower than the value reported by Tabor.

Further assessing the literature that supports a constraint factor of 2.8, it is noted that

some researchers [1, 3, 5, 52] have indeed measured the contact radius in the fully

loaded condition [2, 5, 53], which appears to negate the arguments made earlier and

adds significant confusion. Our interpretation and rationale is as follows. First, the

agreement on the constraint factor for protocols which measure the contact radius in

the fully loaded condition and from residual indents is largely based on the material

response after significant plastic deformation has occurred at the indentation site (i.e., a

fully plastic zone is established at the indentation site). At such large plastic strains, the

difference between the contact radius in the fully loaded condition and from residual

indents, as Tabor used, is significantly less than during the early stages of plasticity.

Consequently, experiments in this regime using both definitions of contact radius

provide similar constraint factors. Second, the protocols used to estimate the contact

radius in the fully loaded condition [2, 5, 53] in prior studies are not the same as those

used in this work [4, 29]. Donohue et al. [54] critically evaluated these differences using

a finite element model as a surrogate for the indentation experiment. These authors

Table 2 Primary indentation zone size (PIZ) at yield and the estimated number of grains in the PIZ

Condition Contact radius at yield [μm] PIZ volume [103 mm3]
(πa2 × 2.4a)

Estimated no. of grains
No: ¼ 1:8a3=R3G

AR 156 ± 16 28.7 348

204 °C 158 ± 12 29.6 359

274 °C 103 ± 35 8.2 99

343 °C 92 ± 17 6.0 72

413 °C 31 ± 3 0.2 3
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found that the protocols used in literature estimate the actual contact radius while the

protocols used in this work estimate the Hertzian contact radius—one that is consistent

with Hertz’s theory. Additionally, the Hertzian contact radius was found to be

larger than the actual contact radius once plasticity initiates (even at small plastic

strains). Once more, it becomes apparent that it is very reasonable that the

constraint factor presented here (~1.9) is significantly lower than the value

reported by Tabor and others (around 2.8).

Models and finite element simulations also provide additional insights regarding

the constraint factor for the protocols used in this work. For example, a simple

application of the Mises yield criterion to the elastic stress fields predicted by

Hertz theory suggests that plasticity initiates inside the indentation zone around a

value of 1.1σy, where σy represents the uniaxial yield strength of the sample. How-

ever, this value reflects only the initiation of plasticity in the indentation zone and

is very difficult to discern or validate in the actual experiment [5]. In addition to

exploring differences in estimating the contact radius in the fully loaded condition,

Donohue et al. [54] modeled the point of deviation from the linear elastic regime

for an isotropic elastic-plastic material with protocols that are very consistent with

the protocols described in this paper. This study reported a constraint value of

about 1.3 at the point of deviation from the linear elastic regime in the indentation

stress-strain curve [54]. This point is also very difficult to establish in the experi-

ments as it is very sensitive to test parameters, such as the loading rate and data

acquisition rates. Indeed, this is also the reason why one generally adopts an offset

definition of the yield point (instead of deviation from linearity) even in the

conventional uniaxial tension and compression tests on bulk samples. Very recent

finite element studies [55] have identified a value of 2.2 for the constraint factor in

indentation tests for points corresponding to an offset definition of the indentation

yield point. It should be noted that this value corresponds to isotropic elastic-

plastic response of the sample material obeying the J2 flow theories. Keeping in

mind that the real material behavior in our tests is likely to deviate somewhat from

this idealized material law, it is remarkable that our experiments have indicated an

average value of 1.9 with a standard deviation of 0.3.

It is not expected that the constraint factor of 1.9 determined for the Al-6061 studied

here will be constant across all material systems (e.g., it will depend on various

attributes of the material mesostructure). Furthermore, some uncertainty in relating the

indentation strength to the uniaxial strength is unavoidable because of the heterogen-

eity inherent to the indentation measurement. In other words, the deformation

processes in indentation and uniaxial testing are inherently different. However, the

microindentation protocols demonstrated here arguably reduce this uncertainty by

capturing the elastic-plastic transition (indentation yield strength) as opposed to hard-

ness. Just to be clear, we are not suggesting that the constraint factor of 2.8 reported in

literature is incorrect. We are suggesting that the protocol for relating indentation mea-

surements to uniaxial yield strength can be vastly improved using the microindentation

stress-strain protocols and indentation yield strength measurement demonstrated in

this study which inevitably leads to a different constraint factor (1.9). For example, it is

expected that the indentation yield strength will show significantly less dependence on

the material hardening behavior because the plastic deformation at the indentation
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yield point is minimal compared to hardness measurements. The ratio of 1.9 is likely to

extend to other material systems which have similar anisotropies (i.e., cubic materials

with weak textures). Further improvements to microindentation testing and analyses

will allow for even greater confidence in high throughput screening methods for new

structural alloys.

Application: high throughput exploration of process-property linkages

The Materials Genome Initiative (MGI) has set forth the goal of cutting the mate-

rials discovery, development, and deployment time in half while simultaneously

reducing the cost [56]. An important strategy for the practical realization of these

goals comes from the development and adoption of novel protocols for extracting

critically needed materials information or knowledge in a high throughput manner.

As a prime example, the functional and biological materials communities have

successfully adopted combinatorial approaches for creating the requisite knowledge

systems in their fields [57–61]. Such combinatorial approaches generally involve

synthesis methods/protocols for generating materials or sample libraries that

contain small volumes of a substantially large variety of materials corresponding to

different chemistries and/or process histories. Once the materials/sample library is

produced, a high throughput screening method is generally applied to evaluate the

material performance of interest. It is important that the property/performance

characterization tools and techniques are able to reliably assess the property of

interest from the small material volumes available in the sample library. These high

throughput elements are critical to the successful realization of the acceleration in

materials innovation envisioned by MGI.

In structural materials development, there have been numerous efforts aimed at high

throughput explorations [62–71]. A number of these prior efforts have either employed

standard tensile testing [62] (demands sufficiently large amounts of material samples

produced with excellent control of processing history in the entire sample volume) or

grossly simplified hardness measures [72] (these should largely be treated as qualitative

measures as they generally correspond to a finite amount of plastic strain that is not

maintained constant for the different samples and materials tested). A relatively small

number of studies have actually employed nanoindentation [65, 66, 69–71]. However,

as discussed in prior work, the protocols used in the analyses of these datasets do not

produce consistent and reliable values. Furthermore, the nanoindentation measure-

ments largely reflect grain-scale measurements that cannot be easily transformed to

bulk (polycrystalline) values. The spherical microindentation stress-strain protocols

developed and presented earlier are ideally suited for the task at hand.

We undertake a simple case study to demonstrate the use of the protocols de-

veloped and presented earlier on a microstructurally graded sample to extract

processing-property relationships. This set of experiments focused on the careful

design of a sample library with different thermal processes (high throughput

sample prototyping) that is mechanically evaluated with spherical microindentation

stress-strain measurement protocols. The library results are compared against indi-

vidual samples processed through traditional methods in order to validate the high

throughput protocols.

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 13 of 20



For high throughput prototyping of samples, a custom setup was designed and built

to produce a single bulk sample that can serve as a sample library (Fig. 8). This setup

was designed to explore the full range of aging temperatures shown in Fig. 2 in a

single sample. The sample, a cylindrical rod of 1.5 cm diameter and 18.7 cm length

oriented along the plate’s rolling direction, was suspended with one end in molten salt

held at 480 °C, and the other end screwed into a 7.62 cm × 7.62 cm × 5.08 cm

aluminum block that was cooled continuously using a chiller and a 50/50 mixture of

ethylene glycol and water maintained at 10 °C. On the section of the sample that was

above the molten salt, eight small, equally spaced, holes were drilled to the center of

the rod to place thermocouple sensors (K-type) to measure the local temperature

histories. The sample was also insulated to minimize heat loss. The sample was aged

2 h in the setup described above and water quenched. The sample was kept in a

freezer between heat treating and preparation for microindentation. The sample was

sectioned along the rolling direction and metallographically prepared for indentation

as shown in Fig. 8. Each column (perpendicular to the applied gradient) in the array

of indentation tests represents one process in the sample library. There was 3 months

between the first set of experiments and the second set of experiments for which the

sample was at room temperature in a low humidity environment. There was no differ-

ence observed in the indentation responses between the two sets of experiments, so

we assume there was no natural aging.

For the combinatorial sample, a temperature range of ~200 to 400 °C with a lin-

ear gradient was achieved in the section monitored by thermocouples shown sche-

matically in Fig. 8. This temperature range was chosen to cover the aging

temperatures explored for individual heat treatments. Microindentation tests (84 in

total) were performed in the sample section monitored by thermocouples with a uniform

grid (3 rows, 28 columns with 2.5 mm spacing between columns and 2–3 mm spacing be-

tween rows). This spacing, an indent center to center spacing of six times the residual

Fig. 8 High throughput schematics: a custom setup for producing a sample library of different aging
temperatures and b mechanical screening of the sample library through spherical microindentation. The
spacing and size of indents is not drawn to scale
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indent radius, is the accepted convention [73]. It may be possible to further reduce the spa-

cing through experiments and simulations to develop a less conservative criterion for the

minimum allowable spacing. The average Young’s modulus estimated from the indentation

measurements was 69.7 GPa, with a standard deviation of 3.0 GPa and a range of 62.6 to

76.7 GPa. This compares well to the average Young’s modulus measured from all RD tensile

tests which was 69.6 ± 7.6 GPa. These results provide partial validation of the indentation

protocols developed and employed in this work. The position and temperature of the ther-

mocouples were used to estimate the aging temperature at each indentation site. Indenta-

tion yield strength for each test is plotted against aging temperature in Fig. 9 which shows

decreasing strength with increasing aging temperature. Indentation yield strength measure-

ments on the combinatorial sample are generally consistent with measurements on indi-

vidually heat-treated samples (Fig. 9). In one case, measurements made at 204 °C, the

indentation yield strength did not agree between the individually heat-treated sample and

the corresponding high throughput sample measurement. Although the reason for this dis-

crepancy is not clear, we believe that the error might actually be in the measurement on the

individually heat-treated sample at 204 °C. Note that the trends in the values measured on

the high throughput sample are fairly smooth and consistent among themselves. This as-

sumption is supported by the fact that the tensile yield strength only decreased 2 % from

the AR material to the 204 °C condition, which is well captured by the measurements on

the high throughput bar. Overall, it is clear that the indentation measurements on the high

throughput sample can be used reliably in screening of process parameters.

In addition to the grain size relative to the primary indentation zone, there is another

length scale which must be considered in the high throughput sample, which arises due

to the processing temperature gradient imposed on the sample. As a result of this

Fig. 9 High throughput indentation experiments. Indentation measurements on the high throughput
sample are in blue. Out of 84 tests, 76 were successfully analyzed. Each data point is the average of typically
3 tests performed at the same aging temperature (position along the bar). Error bars in the y-axis are ±one
standard deviation. Error bars on the x-axis are estimated at ±5 °C. For comparison, indentation yield
strength measurements for the individual heat treatments are also plotted in red. The error bars for these
points are ±one standard deviation
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imposed gradient, there will be a temperature difference across the primary indentation

zone. Evaluating the temperature difference across the primary zone in Fig. 7 shows

there is less than a 1 °C difference across the zone, which we believe will have a

negligible effect on the response measured in our experiments. This means that the

individual indentation measurements on the high throughput sample should be equiva-

lent to doing indents on individually heat-treated samples at the same temperature.

Indeed, the comparison between indentation measurements on individual heat treat-

ments and the high throughput sample shown in Fig. 9 supports this assumption.

As other researchers have demonstrated, indentation combined with a microstructu-

rally graded sample can significantly reduce the time and effort needed to reveal mate-

rials information. The high throughput application in this study demonstrates this

benefit. The reduction in time and effort was achieved by eliminating (i) the need for

processing many batches of material at different temperatures, (ii) machining and test-

ing many tensile specimens for each condition, and (iii) preparing individual samples

for metallography for each process condition. In the process-property measurement

protocol outlined in this paper, a single specimen was processed and metallographically

prepared for both structure and mechanical characterization. The total test time for the

combinatorial sample was about 2 days and could be further optimized for high

throughput. The coupling of combinatorial processing and indentation stress-strain

protocols has the potential to drastically reduce the time, material, and effort to

improved structural alloys. The structure-processing-property space can be explored

quickly to make decisions about what materials and processes are worth further explor-

ation and more effort intensive characterization.

A critical step in the protocol developed in this study is the appropriate choice of the

indenter size (radius). The appropriate choice is one that creates a sufficiently large

primary indentation zone (enough to be considered polycrystalline or the equivalent of

multiple microstructural features for other materials). Secondly, the indenter size should

be considered concurrently with the design of a processing gradient. The most challen-

ging case would be a sharp gradient that makes it hard to reliably measure local proper-

ties. Choosing an indenter size too large for a given gradient would create the same

problem. Finally, the indenter sizes appropriate for this study required loads well beyond

that of typical instrumented nano and microindentation systems. It took 400 N to recover

the indentation stress-strain curve which is 40× the limit of the high load option on an

XP head, Agilent G200 Nanoindenter. It is therefore clear that some effort needs to be

expended in selecting the appropriate combination of the indenter size and the indenta-

tion system in designing the experiments using the protocols described in this work.

Conclusions
Spherical indentation stress-strain protocols have been extended to an instrumented mi-

crohardness tester capable of testing larger volumes of material (polycrystalline volumes)

using larger tip radii and higher loads. This capability produced two major findings:

1. This study has produced new experimental correlations between indentation and

uniaxial yield strengths using a new set of protocols to improve the efficacy of such

endeavors. Indentation yield strength defined using a 0.2 % strain offset on the

indentation stress-strain curve was correlated to tensile yield strength for different
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aging temperatures on Al-6061 by a constant value of approximately 1.9 (Yind ≈ 1.9σy),

which is in good agreement with FEM simulations reported in literature for an

isotropic material. This allows spherical indentation stress-strain protocols to be used

as a reliable, high throughput mechanical characterization tool to quickly determine

uniaxial yield strength.

2. Microindentation stress-strain curves can be inserted in high-throughput protocols

for a more robust mechanical characterization of sample libraries. In this study, a

combinatorial synthesis approach was used to make a single sample with many

sample volumes subjected to different aging temperatures. The temperature

gradient was small enough compared to the volume of material tested at each

indentation site that each test could be treated as a measurement corresponding to

a single aging temperature. The high throughput synthesis and mechanical

characterization protocol reduced significantly the material, time, and effort needed

to recover strength and aging temperature trends in Al-6061. This protocol can be

applied to other thermo-mechanical processes to rapidly explore process-property

trends and discover new/improved materials at a fraction of the time and cost with

higher fidelity than traditional hardness and modulus measurements.

Availability of data and materials
All aspects of the data are available upon request. The mechanical property measure-

ments (microindentation and tensile) will be added to the NIST repository under the

ASM Structural Materials Data Demonstration Project https://materialsdata.nist.gov/

dspace/xmlui/handle/11256/419

Abbreviations
ISS, indentation stress-strain; CSM, continuous stiffness measurement; wt.%, weight

percent; AR, as-received condition; PIZ, primary indentation zone; P, load; h, displace-

ment; Eeff, effective modulus; Reff, effective radius of curvature; he, elastic displacement;

hr, residual height or displacement; Ei, vi, indenter Young’s modulus and Poisson’s ratio;

Es, vs, sample Young’s modulus and Poisson’s ratio; hs, sample displacement accounting

for elastic displacement of the indenter tip; hi, estimated elastic displacement of the

indenter tip; a, contact radius; Ri, indenter radius; Rs, sample radius of curvature; Eind,

indentation modulus; σind, indentation stress; εind, indentation strain; Yind, indentation

yield strength; σys, uniaxial yield strength; RG, average grain size (radius).

Authors’ contributions
All authors read and approved the final manuscript. JSW led the microindentation testing and analysis. AK performed
the majority of the processing, sample preparation, and microscopy (optical, SEM, EBSD). AC conducted the majority of
the tensile tests and assisted in the design of the test setup for the microstructurally graded sample. SRK directed the
research. All authors contributed to writing of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors wish to thank Mr. Scott Henry and Mr. Larry Berardinis at ASM International for their leadership on the
Structural Materials Data Demonstration project under which this study was started. We also want to thank Dr. Warren
Hunt of Nexight Group and Mr. Kevin Anderson of Mercury Marine for their expert knowledge of Al-6061 and careful
selection of the material and processing parameters. In addition, we wish to acknowledge Dr. Carelyn Campbell and
Dr. Yaakov Idell at NIST for their helpful discussions and sharing TEM and chemical composition analysis. The tensile
testing was completed in a shared user facility, the Materials Property Research Lab, at the Georgia Institute of
Technology which is operated and maintained by Dr. Richard Neu, Mr. James Huggins, and Mr. Kyle Brindley.

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 17 of 20

https://materialsdata.nist.gov/dspace/xmlui/handle/11256/419
https://materialsdata.nist.gov/dspace/xmlui/handle/11256/419


Funding
Funding for this study was provided by NIST 70NANB14H191.

Author details
1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 2Center for
Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.

Received: 11 April 2016 Accepted: 25 May 2016

References
1. Field JS, Swain MV (1995) Determining the mechanical properties of small volumes of material from

submicrometer spherical indentations. J Mater Res 10(1):101–112
2. Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8(2):297–306
3. Basu S, Moseson A, Barsoum MW (2006) On the determination of spherical nanoindentation stress-strain curves.

J Mater Res 21(10):2628–2637
4. Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical

nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532
5. Herbert EG et al (2001) On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398:331–335
6. Pathak S et al (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-

indentation and orientation imaging microscopy. J Mater Sci 47:815–823
7. Pathak S et al (2011) Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation.

J Mech Behav Biomed Mater 4:34–43
8. Pathak S et al (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in

metals. J Mater Res 24(3):1142–1155
9. Pathak S et al (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976
10. Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline

samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028
11. Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using

spherical nanoindentation. Acta Mater 90:27–36
12. Kalidindi SR, Vachhani SJ (2014) Mechanical characterization of grain boundaries using nanoindentation. Curr Opin

Solid State Mater Sci 18(4): 196–204.
13. Vachhani S, Doherty R, Kalidindi S (2013) Effect of the continuous stiffness measurement on the mechanical

properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751
14. Hay J, Agee P, Herbert E (2010) Continuous stiffness measurement during instrumented indentation testing. Exp

Tech 34(3): 86–94.
15. Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its

applications. Materials Characterization. 48(1):11–36.
16. ASTM E8 / E8M-15a (2015) Standard Test Methods for Tension Testing of Metallic Materials. ASTM International,

West Conshohocken, PA. www.astm.org
17. Gau JT, Principe C, Wang JW (2007) An experimental study on size effects on flow stress and formability of

aluminum and brass for microforming. J Mater Process Technol 184(1-3):42–46
18. Keller C, Hug E, Chateigner D (2009) On the origin of the stress decrease for nickel polycrystals with few grains

across the thickness. Mater Sci Eng A, Struct Mater, Prop Microstruct Process 500(1-2):207–215
19. Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission

electron microscope. J Mater Res 20(7):1769–1777
20. Jun T-S et al (2016) Local deformation mechanisms of two-phase Ti alloy. Mater Sci Eng A 649:39–47
21. Chansun S et al. (2015) Specimen size effects on the weakening of a bulk metastable austenitic alloy. Materials

Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing). 622:67–75.
22. Hemker KJ, Sharpe WN (2007) Microscale characterization of mechanical properties. Annu Rev Mater Res

37:93–126
23. Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73
24. Tabor D (1951) The hardness of metals. Clarendon, Oxford, p 175, ix
25. Taljat B, Zacharia T, Haggag FM (1997) Analysis of ball-indentation load-depth data: part I. Determining elastic

modulus. J Mater Res 12(4):965–974
26. Alcala J, Giannakopoulos AE, Suresh S (1998) Continuous measurements of load-penetration curves with spherical

microindenters and the estimation of mechanical properties. J Mater Res 13(5):1390–1400
27. Haggag FM (ed) (1993) In-Situ Measurements of Mechanical-Properties Using Novel Automated Ball Indentation

System. Small Specimen Test Techniques Applied to Nuclear Receptor Vessel Thermal Annealing and Plant Life
Extension, ed. W.R. Corwin, F.M. Haggag, and W.L. Server. Vol. 1204. 27–44

28. Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R-Rep 91:1–36
29. Pathak S, Shaffer J, Kalidindi SR (2009) Determination of an effective zero-point and extraction of indentation

stress-strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442
30. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances

in understanding and refinements to methodology. J Mater Res 19(1):3–20
31. Hertz H, Jones DE, Schott GA (1896) Miscellaneous papers by H Hertz. Macmillan and co. xxvi, London, New York
32. Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples

using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116
33. Willis JR (1966) Hertzian contact of anisotropic bodies. J Mech Phys Solids 14(3):163
34. Gao YF, Pharr GM (2007) Multidimensional contact moduli of elastically anisotropic solids. Scr Mater 57(1):13–16

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 18 of 20

https://www.astm.org


35. Swadener JG, Pharr GM (2001) Indentation of elastically anisotropic half-spaces by cones and parabolae of
revolution. Philos Mag A 81(2):447–466

36. Vlassak JJ et al (2003) The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape.
J Mech Phys Solids 51(9):1701–1721

37. Vlassak JJ, Nix WD (1994) Measuring the elastic properties of anisotropic materials by means of indentation
experiments. J Mech Phys Solids 42(8):1223–1245

38. Vlassak JJ, Nix WD (1993) Indentation modulus of elastically anisotropic half-spaces. Philos Mag A 67(5):1045–1056
39. ASM International (2002) ASM handbook volume 11 (online). ASM International, Materials Park, OH
40. Ozturk F et al (2010) Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater Des

31(2):972–975
41. Buha J et al (2007) Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Mater 55(9):3015–3024
42. Edwards GA et al (1998) The precipitation sequence in Al-Mg-Si alloys. Acta Mater 46(11):3893–3904
43. Marioara CD et al (2006) Post-beta '' phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si

alloys. J Mater Sci 41(2):471–478
44. Johnson KL (1985) Contact mechanics. Cambridge Cambridgeshire; New York: Cambridge University Press.

xi, 452 p.
45. Hill R, Storakers B, Zdunek AB (1989) A theoretical-study of the Brinell hardness test. Proceedings of the Royal

Society of London Series a-Mathematical Physical and Engineering Sciences 423(1865):301–330
46. Tirupataiah Y, Sundararajan G (1991) On the constraint factor associated with the indentation of work-

hardening materials with a spherical ball. Metallurgical Transactions a-Physical Metallurgy and Materials
Science 22(10):2375–2384

47. Alcala J, Esque-de los Ojos D (2010) Reassessing spherical indentation: contact regimes and mechanical property
extractions. Int J Solids Struct 47(20):2714–2732

48. Richmond O, Morrison HL, Devenpeck ML (1974) Sphere indentation with application to the Brinell hardness test.
Int J Mech Sci 16(1):75–82

49. Yu W, Blanchard JP (1996) An elastic-plastic indentation model and its solutions. J Mater Res 11(09):2358–2367
50. Jackson R, Ghaednia H, Pope S (2015) A solution of rigid–perfectly plastic deep spherical indentation based on

slip-line theory. Tribol Lett 58(3):1–7
51. Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18(2):115–126
52. Fischer-Cripps AC (2000) A review of analysis methods for sub-micron indentation testing. Vacuum 58(4):569–585
53. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and

displacement sensing indentation experiments. J Mater Res 7(6):1564–1583
54. Donohue BR, Ambrus A, Kalidindi SR (2012) Critical evaluation of the indentation data analyses methods

for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater
60(9):3943–3952

55. Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple
compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater
112:295–302

56. National Science and Technology Council (U.S.) (2011) Materials Genome Initiative for global competitiveness.,
Executive Office of the President, National Science and Technology Council.: Washington D.C. https://www.
whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf.

57. Maier WF, Stowe K, Sieg S (2007) Combinatorial and high-throughput materials science. Angew Chem-Int Edit
46(32):6016–6067

58. Potyrailo R et al (2011) Combinatorial and high-throughput screening of materials libraries: review of state of the
art. ACS Comb Sci 13(6):579–633

59. Simon CG, Lin-Gibson S (2011) Combinatorial and high-throughput screening of biomaterials. Adv Mater 23(3):
369–387

60. Zhao JC (2014) High-throughput experimental tools for the materials genome initiative. Chin Sci Bull 59(15):
1652–1661

61. Green ML, Takeuchi I, Hattrick-Simpers JR (2013) Applications of high throughput (combinatorial) methodologies
to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113(23):231101-01 to 231101-53. http://
dx.doi.org/10.1063/1.4803530.

62. Springer H, Raabe D (2012) Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk
combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater
60(12):4950–4959

63. Warchomicka F et al (2010) Microstructure evolution during hot deformation of Ti-6Al-4v double cone specimens.
Int J Mater Form 3:215–218

64. Miracle DB et al (2014) Exploration and development of high entropy alloys for structural applications. Entropy
16(1):494–525

65. Zhao JC et al (2002) A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus.
Jom-Journal of the Minerals Metals & Materials Society 54(7):42–45

66. Zhao JC (2001) A combinatorial approach for efficient mapping of phase diagrams and properties. J Mater Res
16(6):1565–1578

67. Warren OL, Wyrobek TJ (2005) Nanomechanical property screening of combinatorial thin-film libraries by
nanoindentation. Meas Sci Technol 16(1):100–110

68. Shastry VV et al (2013) Combining indentation and diffusion couple techniques for combinatorial discovery of
high temperature shape memory alloys. Acta Mater 61(15):5735–5742

69. Han SM et al (2005) Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation. Acta
Mater 53(7):2059–2067

70. Menendez E et al (2014) A combinatorial study of the mechanical and magnetic properties of a gradually nitrided
austenitic stainless steel single crystal. Crystengcomm 16(17):3515–3520

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 19 of 20

https://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://dx.doi.org/10.1063/1.4803530
http://dx.doi.org/10.1063/1.4803530


71. Tweedie CA, et al (2005) Combinatorial material mechanics: high-throughput polymer synthesis and
nanomechanical screening. Adv. Mater. 17(21):2599-2604.

72. ASTM A255-10 (2014), Standard Test Methods for Determining Hardenability of Steel. ASTM International, West
Conshohocken, PA. www.astm.org

73. ASTM E10-12 (2012) Standard Test Method for Brinell Hardness of Metallic Materials. ASTM International, West
Conshohocken, PA. www.astm.org

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Weaver et al. Integrating Materials and Manufacturing Innovation  (2016) 5:10 Page 20 of 20

https://www.astm.org
http://www.astm.org

	Abstract
	Background
	Methods
	Materials
	Mechanical tests
	Microindentation data analyses

	Results and Discussion
	Comparison of microindentation and uniaxial responses
	Relationships between indentation and uniaxial measurements
	Application: high throughput exploration of process-property linkages

	Conclusions
	Availability of data and materials
	Abbreviations
	Authors’ contributions
	Competing interests
	Acknowledgements
	Funding
	Author details
	References

